@ CrownPeak

VVVVVVVVVV

MVC Reference Architecture Playbook

© 2014 CrownPeak Technology, Inc. All rights reserved. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopy, recording, or any information storage and retrieval system, without permission

from CrownPeak Technology.

Document History

Author/Editor ‘ Reason for Change Version

CrownPeak 09/18/2014 Original Version 1.0

CrownPeak Technology

MVC Reference Architecture Playbook

Table of Contents

4T T LT T o 4
L0 T = 0] 1ot {1 4
Architectural ChallENZEScccovviiiiiiiiiiiiiiiiiiiiirrrr s sssssssss s s s s s ssans 4
Reference Architecture (Visual Studio 2013 Project).......ccccceerrrriicrrrnneeennssiccsssnneessssssssssnnsssnsssssssssnnnns 4
JAPP._STart/ROULECONTIZ.CS ooevriiitieiitiiecee ettt eetee et e et eeteeeetee e et e esteeeebeeentaeebeeenbeeetesebeeeasesenteesareean 5
/Controllers/CrownPeak/CrownPeakPageCoNntroller.CSccuuiiiiiiieeeceeecteeecreeectreecieeestee e ree e 6
Reference Architecture (CrownPeak Site)ccccceeeriiiiiirrrrereriiiiiinssneeesissssssssnneeessssssssssnneesssssssssssnnnns 7
FOIARE SEIUCTUIE ...t ettt e s bbbt e st e bt e sab e e s bb e e sabeesnteesaneennees 7
Razor SYyntax in PUBIISNEd VIEWScooceiiee ettt e e et e e st e e e nea e e e nnneas 9

CrownPeak Technology 3

MVC Reference Architecture Playbook

Introduction

The CrownPeak CMS can be used to drive content to a wide range of platforms and services,
thanks mainly to the de-coupled architecture and publishing model. This means that it is
possible to publish not only web content, but also application code to be executed at
runtime upon the publishing platform. In this way, delivery of application following any
language framework can be achieved. This reference architecture describes how ASP.net
MVC can be delivered from the CrownPeak CMS to a publishing platform that supports .NET
Framework 4.5.

Core Objectives

The objective of this project is to show how the following can be achieved using the
CrownPeak CMS and standard developer tools, without requiring further product
development:

e Build an ASP.net MVC website through Visual Studio 2013:

o Build an MVC Controller to handle bespoke functionality;

o Build an MVC Controller to handle page content, look & feel;

o Handle HTTP 404 & 500 errors gracefully;

o Upload the published MVC website into the CMS:

* Enable publication of the MVC website code to the publishing
servers using standard CrownPeak workflows.

o Create & manage navigation wrapping (or MVC View Layouts) from within
the CMS;
Create & manage page content (or Views) from within the CMS;
Support CrownPeak Preview & In-Context editing as standard.

Architectural Challenges

When deploying a custom application using the CrownPeak CMS, typically the content is
rendered into the published pages prior to publication making it static by nature. In a
traditional MVC application, the page content (or model) is held separately to the layout (or
View). This causes challenges for supporting both Preview & In-Context editing gracefully, as
there are no in-built features for interpreting & executing these types of code within the
CMS. As we care as much about the authoring/editing experience as we do about the
customer journey, we have made the architectural decision that we should combine both
page content and view together. Traditionalists may not favor this approach, as they lose
some of the flexibility that MVC offers (being able to apply views to multiple models),
however we feel that this is a necessary trade-off in order of offer a rounded experience.

Reference Architecture (Visual Studio 2013 Project)

CrownPeak has created a .NET MVC Website project, based upon the standard ‘Empty MVC
Project’ template within Visual Studio 2013. This is currently located at:
https://github.com/Crownpeak/MVC-reference-architecture

CrownPeak Technology 4

https://github.com/Crownpeak/MVC-reference-architecture

MVC Reference Architecture Playbook

/App_Start/RouteConfig.cs
To the standard project, we have created two routes within /App_Start/RouteConfig.cs
which catch the following:
routes.MapRoute(
name: "Contact",
url: "contact/{action}",

defaults: new { controller = "Contact', action = "Index" }

Any request to /contact/* will be caught by our route configuration and passed to the
ContactController. This shows the example of how we can build custom functionality within
an application, which extends that offered by the CrownPeak CMS. An example of this usage
may be where a website has a login/management feature, which is not suitable for
deployment within CrownPeak tools. If no custom functionality has been built, then this
route can be ignored.

routes._MapRoute(

""CrownPeakPage",

"{*page}”,

new

{

controller = "CrownPeakPage",
action = "Page"

}

The second is a ‘catch-all’ for any route not handled by our custom route configurations.
This is designed to ensure that the website behaves as a content managed site,
understanding the content being requested and looking for the published content on disk.

CrownPeak Technology 5

MVC Reference Architecture Playbook

/Controllers/CrownPeak/CrownPeakPageController.cs

The CrownPeakPageController is a custom controller, built by CrownPeak that is used to
interpret the page being requested (from the Url), and look for the appropriate view file on
disk (published by the CrownPeak CMS). In the event of the view file not being found, we
can assume that the page doesn’t exist, and therefore display an HTTP404 error to the user.

public class CrownPeakPageController : Controller

{
public ActionResult Page()

{

if (Request.Url == null) return null;

var absolutePath =
Request.Url_AbsolutePath._Replace(Request._ApplicationPath, "'");

it (labsolutePath.StartsWith(*'/'")) absolutePath = /" +
absolutePath;

if (absolutePath == '"'/") absolutePath =
ConfigurationManager .AppSettings["'CrownPeak:Defaul tHome"];

var viewFile = GetViewFileLocation(absolutePath);

ifT (System.l10.File_Exists(Server _MapPath(viewFile)))
return View(viewFile);

Response.StatusCode = 404;

Return
View(GetViewFileLocation(ConfigurationManager .AppSettings[''CrownPeak:
Default404"]));

}

private static string GetViewFileLocation(string viewFile)
{
return new
StringBuilder() .Append(ConfigurationManager .AppSettings['CrownPeak:Vi
ewsRoot™]) -Append(viewFile) .Append(ConfigurationManager .AppSettings[™
CrownPeak:ViewsFileExtension'™]).ToString();

}

CrownPeak Technology 6

MVC Reference Architecture Playbook

You will note a number of calls to the
System.Configuration.ConfigurationManager.AppSettings collection, these are configured
within the web.config file, as follows:

<appSettings>
<add key=""CrownPeak:ViewsRoot" value="~/Views/CrownPeak" />
<add key=""CrownPeak:ViewsFileExtension" value="_cshtml" />
<add key="'CrownPeak:DefaultHome" value="/index" />
<add key="'CrownPeak:Default404" value="/404" />
<add key="CrownPeak:Default500" value="/500" />
</appSettings>

Essentially, within this we are setting the default location for view files to be searched and
the default file-extension. In addition, we are also setting the default URLs for the homepage
(where /index is not specified on the URL), as well as the HTTP404 & 500 friendly page
locations.

You will note that error handling & reporting has been deliberately omitted from this
example, but is expected to have been included within any production deployments.

Reference Architecture (CrownPeak Site)

A website folder has been created within the CrownPeak MasterTraininglnstance which has
been configured to run this application, and to publish content into the ASP.net MVC
Website project.

The website is currently located at: http://mtistage.cp-access.com/z-pharma-mvc/

Folder Structure

The following folder structure has been created within the CrownPeak CMS website folder.

CrownPeak Technology 7

http://mtistage.cp-access.com/z-pharma-mvc/

MVC Reference Architecture Playbook

ann CrownPask | MassesTraininglostance

CrownPeak Lisd View [T —

CrownPeak Master Training Instance

The _Application folder contains the published code from the Visual Studio 2013 project, has
basic workflow attached, and has had its publishing properties set to publish to the root of
the website (/). In addition, an IT ticket was created to enable this as an ‘application’ within
[IS and to run under an application pool using the .NET Framework 4.0.

As with all standard CrownPeak projects, we have the concept of a Global Configuration file
(for setting page title, metadata and global content). This project is no different, and the
Global Configuration asset can be located within the Global Config folder.

Again, we have a Global Assets folder, which following best practice will contain assets
available to all languages within the published site.

We also have an /EN folder, which following standard Translation Model Framework (TMF)
patterns, will enable cloning of content on a per-language basis, as required.

Within the /EN folder, there are two sub-folders:

¢ Locale Config — this contains a Locale Configuration asset, which is based upon the
same template as the Global Configuration one. This will be used to override and of
the Global Configuration settings, to the locale-specific requirements. By default, if
not overridden, the Global Configuration will be displayed;

¢ Layout — this is the MVC equivalent of the CrownPeak NavWrapper. It has no input
template file, only an output template file. It gathers information from either Global
Configuration or Locale Configuration during publishes, and writes this to the
publishing severs. You will note that the filename.aspx template file ensures that this
file is always written to /Views/Shared/_Layout.cshtml.

There is an ‘Index’ asset in the root of the /EN folder. This is the homepage asset. The
filename.aspx template file ensures that this is always written to
/Views/CrownPeak/index.cshtml. It is expected that locale variants of this would be written
to /Views/CrownPeak/{locale_variant}/index.cshtml.

CrownPeak Technology 8

MVC Reference Architecture Playbook

All of the output.aspx template files have been configured to support both Preview & In-
Context editing, by manipulating what is rendered, depending upon the value of
context.IsPublishing. See ‘Preview’ and ‘View Output’ options for further clarity.

Razor Syntax in Published Views

We have already established that we are accepting the combination of page content
(models) and layout (views) within this reference architecture; therefore it would have been
totally acceptable to simply bake page content into the view without the ability to
manipulate this in any way. However, | wanted to show how it would be possible to further
manipulate the content using runtime-based Razor syntax.

Each output.aspx template file renders the page content (whether Global or Locale
Configuration, or page-based data) into the Razor syntax-based ViewData collection
variable. This is done at the top of the template file.

ano Crownfeas | MasterTraininginstance
|5 | Q| oo || R | ke m—m vt =
il == o
B
Status being wsed for render: STAGE
l L1
i 5 ")) [Wiewbata] elccms t T}
it 4 1) L Whevbaka] columliemt") = w Nultl ll wital to Ill of us, and findiag suataizable sclutions to ¢
i *}) { Viewbatal s *1 = "0 Rission
it 1) i ViewCata| *] = “copaacis make -umu- that halp people live leager, heslthisr, more sctive
je <N it 1) { Viewbatal] = 'Besssrch & Developsant®s }
= it ")) { Viewbata]] = “<apar>Tae sclence of Blotechnology and Pharmacology in fueled by a comsitsent
-~ HE }h { Viewbatal 1 - ‘corparate Besposaibllity's)
2 i 3°)) { Viewbata] 3] = “capazait we believe that saly by keepisg cur cors values at &
i “hh { Yiewbaral® "] = maisk nmmxr "
LE [I¥iewData, ContainsKey|"colemTtext]® :: l VimoRtal"catmartbent]) s health in uun ko all of us.clspas>ts §
e 1 i ViewDaza = "Press Baleassa’;
£f (I¥iowData - i : Fiswbata|"columnitaxtl®] = "cpamiesrs more mm the latest nows and informstica coming ot of Pharmecq
e [" *1) 4 VleOatal "colusmiinagel” b
i R i = "Todar'y)
it 1) i ViewCata| mlt- Faarma to relsass oarly stage data ressits for mew pain managemer
it 3)-{ WiewDatal =
[|- 1) { ViewData| = “This Wesk"p }
Af 1vievDa 33 { ¥iewbata| €spazoUS FEA approves the use of Bedena for Adults is lste stage Alsheisee's
i i n t \mmun]
e if v L ") = "Last Week'; }
LE [I¥iewData.Contalnafey|"colmetiext]® n l nmunl columnStaxt}®] = “<spas>Committes for Mediclnal Products for Bosas Gee (CHEP) of the Eusopoan ¥
=
s
14 q»-en(el >#Htal. Rav(VievCata| "colusnlheader” | |</h1>
=" dese aligecenter™>dtnl Raw[Viewbata] “colamnliext”]1</p>
eidie
Bird®
{ViewDatal “columsdheadert®] p/hax
<po | ViewDatal *columadtextl® | heipn
<fdlw
<div class="one-third">
<n2> el Nawi ViewDatal *solumedbeadac 1)</h>
| Viewbata] "eolumeltentd” | jeips
s3headerd” | pe/hin
| ViowBata] “columedtaxt®) 4/ pn
<div olass="clear*>e/divs
g Fropertis
R e Linked Assets
<t-- End Light Wrapper — Tasks
Pagu ow Ingal Asset Management 1AM

View Data Collection

Having added page content to the ViewData collection, we can then use this within the
runtime as we desire. In this example, we have simply rendered this content in the correct
location within the templates.

CrownPeak Technology 9

MVC Reference Architecture Playbook

800 Croweieak |
e e O
[1Wiewbat - 5 = "Rescarch & Develepmest®; Pry—
[1¥iewbata.Cantainkey| “columatextd”)) { “colusniteatl’] = “eapanrThe sciwnce of Ilukn:)_-n]uw and Pharmacslogy s fosled by a comsitssat
[IWiewbat L "] = "Cocparate Reapos i}
[Iiieutata.Contatastey | "columiteati)) { S0k, e lnliame: think: anly: iy Raphog:smz oabe: catuse kN | Prove Rehesh
[1¥isvbata 1y t1g"s)
I rieutata. Contatzali Calumvemtts " Ia wital o all af ussfupanty)
[1¥iovte o]l . *] = "Press Meleases; }
{ivieuoat nakay|"columatest]®)) { Viewbatai“colusaitestl®] = “capamloasn sore about the letest novs snd lnformatics coming oot of Pharmace
[1¥Lewtat. nakey) "columnd inag, imagel®] = %3 }
{1¥Leubat. - = 1
{1¥Loubat. nakey| “columitextl®)) "} Vtevoatal-tolumasteatie] = '-\-u.mu. Phasma to release sarly stage data results for new pain sanagesss
{1 ¥iewbat L “3) § Wiewbatal” 2K)
{1 ¥iewbat . ")) { Viewbarai®,
{IVievbata. ContalnaRey| "columSrextd” ievtatal“colusnstentd’] - “Sepasls FOA approves the use of Sedena for Adilts in late stage Alsheissc's
{1¥iewtara " ST oA) - *Fy)
[IVLievbata - 1§ Viewbara 3] = ‘Laat Weaky }

A"
£ [IVievbata Comtainskey| "colusnStaxtl” :s l ViewDaral“solussStest]”] = "<spamaCossitees for Medicisal Predusts for Husas Use (CHMP) of the Busopean b

}
<lew Bogin Light Erappes -->
elasa="Ligh

<div

<hl elass ﬂiqmnue »nrad. la-mmu[‘colusnlheades" | j
-« “dese:

el

<dlv elass="eloar™></dive
<hr f>

<div elass="cse-third™s
<n3=

T=imp
<p>dNital.RaviVievDara] "colusndtext]”]) </p>
<idive

<l End Light Mrappor -=>

t== Beqin Paralisx
<ssction id="bamner® ol

nnor*s
<niAltal. Raw{ViewCata| *solumn ihosderl” [}</his
“pAWtnl , Rav{ VieuData] “columnltent]®])/p>

List View Page Vew Duget At Manageme

CrownPeak Technology 10

	MVC Reference Architecture
	Document History
	Introduction
	Core Objectives
	Architectural Challenges
	Reference Architecture (Visual Studio 2013 Project)
	/App_Start/RouteConfig.cs
	/Controllers/CrownPeak/CrownPeakPageController.cs

	Reference Architecture (CrownPeak Site)
	Folder Structure
	Razor Syntax in Published Views

